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§1. Consider the supersonic flow over a "sphere-cone" body
(ABC in Fig. 1), performing plane angular oscillations relative
to the center O according to the law

a = a, cos wt (1.1) ‘

where o 1is the instantaneous value of the angle of attack. 1In
Fig. 1 ME 1is a condensation shock and QP is the sonic line.
We will assume that the conditions

ay << 1 o K1 (1.2)

are satisfied, where V] 1is the free stream velocity and L 1is

a characteristic length of the body. Therefore, the perturbations
caused by the oscillating body will be small so that the problem
can be solved by the method of small disturbances. We note that
the second condition (1.2) is satisfied to a high degree of ac-
curacy for supersonic flight.

Restricting ourselves to the linear approximation with re-
spect to the frequency, we will neglect quantities of order ag

and order aowz. Then the parameters of the gas: the velocity
V, the pressure p and the density p can be represented in
the following form:

- - - - . £
v = v, + v + v, P = P, + apa‘+ ap s s P =Pyt ap,, + apg, (1.3)

The parameters with index O describe the basic field aris-
ing from the stationary flow over the body. Parameters with
indices o and & describe the perturbation field which occurs
in phase with the angle of attack and the angular velocity respec-
tively and do not depend on the time and the frequency.

Let us substitute the expansions (1.3) into the system of
equations of gas dynamics written in a moving coordinate system
connected to the body. Then, for determining parameters with in-
dex o we obtain the system of linear equations
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- — — — - - 1%

SLua - L
grad(vova) - Vg X TOot v - VvV, rot v, = — grad Py 5 grad P,
Po 0
dlv(pov + p vo) (1.4)
Po - PO
= Vo grad <f— -y z> + v, grad (—?) =0
Po Po

and for determining parameters with index &

- - = -
v

[ - |
v, t grad[vo(vd ')J Vo X rot v

eQ

- - - pd 1
= (Vd - Ved) X rot v, = ;5 grad Pg - Ba grad Py, (1.5)
0

-

- —
Py + dlv(pdvO + povd) " Vg grad Po = 0

Po P 22 Po
(f— -y — / + VO grad (—— - v Ba + (Vd = ved)grad ;; =0
0

where ve 1is the moving velocity vector. Here the parameters
with index O satisfy the system of equations

25 =
grad > " Vg ¥ rot vo = - - grad Pg
0
(1.6)
> - Pg
div PoVo = 0 Vo grad N 0
Fo
which describe a stationary gas flow.
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We will suppose that the spherical and conical parts of the
surface are joined without jumps of the slope generatrices '(with-
out corners). Furthermore, let the semiangle of the cone, 6g,
be such that the point of junction B 1is always found in the
supersonic region. The first family characteristic BD, start-
ing from the point of intersection B, divides the region be-
tween the condensation shock and the surface of the body into two
parts for the stationary flow over the body at zeroc angle of at-
tack. In the region ABDM the flow is the same as the flow over
an isolated sphere and does not depend upon the presence of the
conical part. In the region DBC the flow is determined by the
motion of the conical part of the surface of the body and by the
propagation of the initial perturbations, given on the character-
istic BD, and also by the stipulated flow over the spherical
part of the body.

§2. We will begin with the determination of the flow in
region ABDM. For this let us consider the flow over the sphere
performing plane angular oscillations with respect to the center
0 (see Fig. 2) according to the law (1L.1). The motion of the

sphere can be decomposed into a translational motion with velocity
%
Ve equal to the absolute velocity of the center, 07, of the

sphere and a rotational motion around the center with velocity

ke
Ve » determined by the law (L.1). We will introduce, in the ex-

amination, a spherical system of coordinates Rjp, ¢5, Wy connec-
ted with the body with the relative velocity

- e Duw
v
e

and a partially connected system of coordinates (spherical co-
ordinates Ry, ¢y, p and rectangular coordinates x, y, z),

translating with velocity V: (Fig. 2).

Let us consider the perturbations coinciding in phase,as is
defined,with the angle of attack. In the linear approximation
with respect to frequency these perturbations correspond to the
stationary flow over a body at an angle of attack a. It is
evident that for the stationary flow over the sphere the gas dy-
namic parameters in the system of coordinates R;, 67, p; do not

depend on the angle of attack but in the system of coordinates

0%
Ry, 09, U9, in the linear approximation with respect to a, we
have the relations

=V, + v, (2.1)
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where f 1is an arbitrary scalar parameter.

moving system of coordinates, we obtain fer

N
f(a) = f + a <8£> s v(a) =-:6 +a <%§> 0
o=

Making use of the

relations for the partial derivatives with respect to time in the

the scalar parameter

£
- af> _ ,
= (Ba = Vs grad fO (2.2)
a=0
%
and for the vector velocity v
- - -5 I—) —
e P b |
v = (BZ> = (Ved V)vo lk X v | (2.3)
a=0
or
- di***'* ek t-%
v, = grad(v_, vo) Vog X ¥ot vy
Q
where Lk is a unit vector directed qLong the axis of the rec-
tangular system of coordinates, and v **/a
I
Relations (2.2), (2.3) permit us to express the parameters
with indices o by means of the parameters of the stationary
flow over the sphere.
Let us now consider the perturbations coinciding in phase,
as defined, with the angular velocity. The rotational motion of
the sphere around its center 07 does not cause perturbations in
the flow of an ideal gas. Therefore, the perturbations with
indices & are determined by the translational flow over the
sphere with relative velocity
Py 103 2.4
Ve = 7 94 (2.4)
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_9
where j 1is a unit vector directed along the y axis of the
rectangular coordinate system and £ 1is the distance between
the points O0; and O, measured in the direction of the axis
69 = 0 (see Fig. 2). 1In the linear approximation with respect
to frequency the translational motion of the body, with velocity
(2.4) in the partially fixed system of coordinates, is equivalent
to a stationary flow at a fictitious angle of attack

5.4
1

a = - —k (2.5)
ol

Taking this into account, we obtain for the arbitrary scalar
parameter £

zl
fd = -7 fa (2.6)
1
%
and for *he velocity vector v
N > . £1—> - - ﬂl—> ek
Vd_vec'x=--qvoc’ or Ve T edz——lva—ved (2.7

Relations (2.6) and (2.7) also permit the parameters with
indices & to be expressed by means of parameters of the sta-
tionary flow over the sphere.

It is easy to show that the obtained solutions (2.3) and
(2.6), (2.7) satisfy the system of equations (1.4), (L.5) and the
boundary conditions on the body

ViR = o, Ve, = Vv .. =0 for R =R (2.8)

where the index R denotes the projection of a vector on the R
axis of the spherical system. In fact, because the system of
equations (1.4) and the first relatior (2.8) can be obtained by
variation, with respect to the angle of attack a, of the exact
system of differential equations of gas dynamics and the boundary
conditions on the surface of the body, written for the case of
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stationary flow, then it is clear that the solution (2.2), (2.3)
satisfies both the system of equations (lL.4) and correspondingly
condition (2.8). Substituting (2.2) and the second relation

(2.3) into the system of equations (1.5) and using relation (2.1),
we obtain

[—> - - & 1 - -3 - 4
gradlvo(vd = Ved)J - Vg X rot (vd = Ved)
- = - Pe, 1
= (Vd = Ved) X rot Vg = 3 grad Py - o grad Pg,
o 0
| — - 4 - 1 . (2.9)
dlepO(Vd - Ved) + PaVo | = 0
Py — P Pg i P
0 ag (=& - o, & 5 0 _
= Vo grad <p % T + (vd Vea)grad 5 = 0
Po 0 o

Comparing (2.9) with (1.4) and the second relation (2.8) with
the first, we see that the solution (2.6), (2.7) satisfies the
system of equations (2.5) and correspondingly condition (2.8).

§3. Let us now dwell on the calculation of the flow in the
region DBC. We introduce a special cylindrical coordinate sys-
tem, connected with the body (Fig. 1). The axis of this system
coincides with the axis of symmetry of the body. The meridian
plane is fixed by the angle ¢ = - u9, and the position of a
point in the meridian plane is fixed by polar coordinates R, 6
with pole at the point of intersection of the generating spheri-
cal and conical parts of the body. The solution of the system
of equations (1.6), (1.4) and (1.5) must satisfy the boundary
conditions on the surface of the body

Voo = o, v ,=0, V.. = v .. =0 for 6 = Gc (3.1

where the index 6 denotes the projection of a vector on the 6
axis, and must take the given values on the characteristic surface
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BD, which is determined as a result of the calculation of the
flow over the spherical part of the body.

Because the flow in the region DBC is supersonic, then for
the solution of the nonlinear system of equations (1.6) and for
the solution of the linear system (1.4) and (1.5) we may use the
method of characteristics. However, this method for obtaining
numerical results requires a great outlay of labor and the appli-
cation of high speed electronic machines in each concrete case.
Therefore, we cite here an approximate analytical method of so-
lution of the problem. A solution will be sought in the form't

f= (f00i~rf .,.)ﬁ—a(faoi—rfali-...)cos w%-d(fdo+"rfdl+-°..)cos Y

(3.2)

o1t

v, = a(va¢0 + rv + ...)sin vy + a(vd + vy + ...)sin ¢

v ayl %0 vl

where £ 1is an arbitrary unknown parameter, excepting the projec-
tion of the vector wvelocity on the ¢ axis. The coefficients in
the expansion (3.2) depend only upon 6.

Substituting the corresponding expansions into the system
of equations (1.6), (1.4) and (1.5), written beforehand in terms
of projections on the axis of the cylindrical system of coordi-
nates R, 68, ¥, we obtain systems of ordinary differential

equations with respect to 6. Solutions of these systems must
satisfy the boundary condition at 6 = 6, and the initial condi-
tions at O = 6%, where 6% 1is the angle of inclination of the

tangent to the characteristic BD at the point B (for r = 0).
For parameters with index 00 we obtain the following system of

nonlinear equations

TThis form of dependence upon ¢ 1s necessary from considera-
tions of the boundary conditions on the body and the form of
the initial data on the characteristic BD (see the following).
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i 1 + pO()
v = v ’ v v =
0x0 060 060 0ro0 Po0V000
(3.3)
1 1
P \Y + v P
pOO 4 098 0r0 _ 0 02 T
00 060 00
and the supplementary final relation
v 2 + v 2 P v 2
0r0 . 060 + '-\-/l 00 _ mzax (3.4)
Y Poo
where vpix 1s the velocity of the flow into a vacuum and the
prime denotes differentiation with respect to 6. Let us substi-
. 1 1 A
tute the expressions for pOO/pOO’ poo/p00 and poo/pOO from
equations (3.3) and (3.4) into the result of differentiating
(3.4) . Taking into account the first equation (3.3), we obtain
v+l ' 2 2 2 " _
v-1 Y0r0 * Voro Vmax>(VOrO + VOrO) = (3.5)

Equating to zero the first factor, with the aid of (3.3)
and (3.4), we obtain a Prandtl-Meyer solution. This solution for
parameters with index 00 would be required by us in the case of
a junction of the spherical and conical sections with a jump in
slope at the point B. In the case under consideration it is
necessary to equate to O the second factor (3.5). Thereby we
obtain a solution satisfying the initial and boundary conditions:

* *
AY v
_ 0r0 _ 0x0 .
Vor0 cos ¢, V050 = % Sin @
cos @ cos ¢
(3.6)
* *
Poo = Poo - P00 = Poo (9=0 -9
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where the asterisk superscript denotes values of the parameters

at 6 = 6%. The solution (3.6) describes a uniform translational
motion. For the remaining coefficients in the expansion (3.2) we
obtain a system of linear differential equations which are easy

to integrate in finite form. We will cite the results of the
integrations for the coefficients in the expansion of the pressure
p, necessary for the calculation of the aerodynamic loads acting
on the body

&% %

_ _Po1r _ o * _ _Pa1 _ o *

Po1 = cos o cos 9, Pyg T Pgor Po1l T P Cos @, Py T Pyo
(3.7)
%

= L [ + 2 *v * tan ®*]cos P - 2 * —ZQEQ— sin ¢

Py % Pg1 P00Y0r0 | Poo *
ccs @ cos @

For the completion of the solution of the problem in region
DBC, it is necessary to express the initial data on 6 = 6%
with the aid of the solution obtained in §2 for the flow in re-
gion ABDM.

§4. Let us begin with the derivation of the equation of the
actual perturbed characteristic surface, passing through the line
of intersection of the spherical and conical parts of the surface
of the body. We will seek this in the form:

*
6=(6 +rxo 4—...)-+a(ea04-r9a +...)cos ¥(4.1)

1 + ...)cos w-+a(6d04-red

1 1

The form of the characteristic surface is determined by the
condition

ORI _ -9F /3t B grad F

N - n(v - ve) = a, N o
v/ lgrad F| v lgrad F|2

(4.2)

-
where n is the unit normal vector, N 1is the relative velocity
of motion of a point of the surface in the direction of the normal,
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F(r,0,y,t) =0 is the equation of the characteristic surface,
and a 1is the local velocity of sound.

Substituting (4.1) into the second and third relations
(4.2), we obtain

N = - d(reao + ...)cos ¥

=}
[}

- (r9l + ...) - a(ral 4+ ...)cos ¥ - d(real + ...)cos ¥ 4.3

] 6.
n =1, n = a(r Egg>+ ..:>sin U+ dir ﬁgg + ...)sin ¥
0 - 0

where Ry = BF (Fig. 1). Let us substitute the expansions (3.2)
and (4.3) into the first relation (4.2). Expanding the functions
of 6 in a series in terms of 6 - 6% by (4.1), we obtain ex-
pressions of the coefficients in the expansion of the equation
of the characteristic surface (4.1) in terms of the values of

the parameters of the gas at 6 = 6%, We cite the expressions
for two of the coefficients which are necessary to us in what
follows

* E3 * x
Vaoo 1 2a0 _ Vaso T 30

Ya0 T T 7w iw o %0 = T T ox i (4.4)
Voeo * 200 Voso T 200

200’ aaO’ adO are the coefficients in the expansion of the local
velocity of sound (3.2).

Writing down the condition of continuity of parameters on
the actual perturbed characteristic and expanding the functions
of 6 1in a series with respect to 6 - 6%, we obtain that at
6 = 6% it is necessary to satisfy the following relations:
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{fog} 0] lfoﬂ + Gll[f(')g} = 0

{fag] M eao{fég} =0

{fal: E ell[fc;g} * eao{f(‘)ﬂ + QlGOLO{f(')';] o "al{fég} =0 (4.5)
{f o; * Qdol[fc;g} =0

€43 ] + 01 E20] + OaplSo1) *+ ©190]%00) * %a1lo0] = ©

where the bracket denotes a jump in the quantities contained in
it from the left to the right for the approximation at 6 = 0%,
The continuity of the parameters of the gas on the actual per-
turbed characteristic surface and the distinct analytical char-
acter of the solution (jumps in derivatives) on both sides of it
lead to the fact that for a united solution, describing the flow
on the spherical and conical parts of the body it is necessary
to take into account discontinuities of parameters along the line
o = 0%, as indicated in (4.5).

In the conclusion of this paragraph let us make one remark.
If the system of equations (1.6), (1.4) and (1.5) is projected
on the axis of the cylindrical system of coordinates and if ome
eliminates from the parameters of the perturbations (with indices
o and &) the dependence upon ¥, then it is easy to see, that
the coefficients for the corresponding derivatives in all three
systems coincide, and consequently, the characteristics of the
linear systems of equations for the perturbations coincide in
the physical plane with the characteristics of the nonlinear
systems of equations describing the stationary flow over a body
at zero angle of attack. This circumstance 1s convenient for
the integration of the linear system of equations (1.4) and (1.5)
by the method of characteristics. However, from the preceding
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considerations, it is clear that for calculations with the aid of
relations of the type (4.5) it is necessary to take into account
discontinuities of the perturbation parameters on the character-
istics separating regions with different analytical character of
the solutions.

§5. With the results of §2, the coefficient values in the
expansion (3.2) are determined on the line 6 = 6%, by using the
approximation on the side of the spherical part of the body.
These coefficient values will be denoted by the subscript s.

In the vicinity of the surface 6 = 6%, 6,>> a, and
T = €9 >> a, so that py = py + 0(a). Taking this into account,
and remembering the expressions

S AP o R R 6 si 5.1
V4R = s Veso = cos W , veaw = cos sin u (5.1)

from (2.3) and (2.2) we find

~ ~ Bfo
f(RZ’ 92, oo a) = fO(RZ’ 52) - Q a? cos i,
z (5.2)
ava"
2 _ 06 .
Vu(RZ’ 82, oo a) = — = sin u,
sin JZ

One can easily find the desired values of the coefficients
for the expansion (3.2) for 6 = 6% on the side of the spherical
part with equations (5.2) and (2.6) and using the relations between
components of the velocity vector in cylindrical and spherical co-
ordinate systems

V. =-vV

r R cos(8 + 92) + v, sin(6 + 6

)
(5.3)

<
Il

o= VR

sin(6 + 62) + v, cos(6 + 92)vw =- v,

12 Research Department
TR-24
December 1962




and the relations

oR oR
2 q 2
= = sin ¢ , <= =0
(ar >r=0 (Be >r=0
(5.4)
<862> _ cos 9 BHZD =0
or =0 R, o0 =0
where RS is the radius cof the sphere.
Assuming Rs = 1 and using the relation (62>r=0 = 3w - Oc,
for coefficients in the pressure expansion, we have
%*
(Poo) s = (Po)r—g
ap op
* % 0 % 0
o) g = sin ¢ (5g ) *eos @ (=)
27 r=0 06 ==0
op op
* * *
(p‘ ) = cos ¢ <f—g> - sin o Cfgg
017 g oR -
27 =0 fole] _
2 =0
(5.5)
op
* 0-
(pao) T 30 P
2 r=0
2 2
* % P % O
(p._,) =—sin(P€ —N-‘Q') -coqu(,\,
al’s 39, 3R 302
2772 =0 2 r=0
£ £
* 71 * * 71 *
(pd0>S - Vl(pOLO)c 3 (pdl)s - Vl(pal)s
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Equations (4.5) determine the relation between values of the
coefficients of expansion in r on the line 6 = 6% by approach-
ing the line from both sides. For the pressure, in particular,
we have

*_ & * % [ |*]
poo (Poo) p01 (P01)s’ Pao™ Pupdgr Pa1 =™ (Pu1d o ¥ 940(Po1 |

(5.6)
* * * * [ l*]
Pso = (Papdss Par = ®adg * 90(Po1 |
. . . U
The magnitude of the jump in [pOlJ in these formulas,
according to (3.7) is determined by the relation
[l*]_ 1ok * *
LpOlJ - (p01)s + tan ¢ (POl)S (5'7)
and the parameters 0 o, and Gdé by the relations (4.4)
'*—'0 |*_ * N
%00 T V¢ Vogo = T 08 @ (Vo) g
oa
* 0 * 06
80 T T <§§— ’ Vaeo = Sin @ ( > (CE)
2 r=0 r=0
* f; * * fl %* PR *
%40 = 7 v, “a0” Va0 v, Yago T S
§6. Let us consider how to determine the aerodynamic moment
My, acting on the oscillating body in supersonic flow. The
moment is made up of two parts. The first part (M,)g 1is crea-
ted by the pressure force, acting on the spherical part of the
body surface, the second is the pressure force acting on the
conical part of the body surface. We introduce the pressure co-
efficient by the formula
14 Research Department
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M

Z
C = p (6'1)
mz %prfLW(L tan ec)z

where Py is the density in the undisturbed flow, and L is a
characteristic length of the body (Fig. 1).

Then the derivatives of the moment coefficient with respect
to o and P, where B = dL/Vy], can be represented for the
spherical part in the form

2
1 *0 1
(C ). =41 + ———— -—) ——
mza”s (y- 1)M <L I‘ cos2 Q:> <I‘> cos2 Gc
7T/2-6c
>< {po = (po)rzo]sin 6 cos 9 do (6.2)
0
. o

Gprpds = - G - T =) (Cnpa)

mzPB’ s (L L c052 UC) mza’ g

and for the conical part in the form

2 po‘o 4 %0
b & sin 9 cos Gc fl(f’ L’ 90) +

(v- 1)M1

a
vl R ©-3
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P.°
_ 2 “0 4 %o
(szﬁ)c 2[1 i (W-I)M%J sin 6, cos 6 fl(f’ T %) *
pO
a X
— 1 L 0 (6.3)
+—— (5 T %) (Cont.)
sin GC
where
g = X0 ) ’
0 -1, _ /20 12 - -0
0@ ©0 %) =31 - (T ZLCOS 5|t - (&
2 Zo 1 (1 lxo4 1 %0
AT T %) T mAE tTAT) T3t ©.4)
o3
1% 1 _ 1%
oy SRR G 5"3"6(?1 }

and the parameters pag, paf, pdg, pd; are considered by expan-

sion of the nondimensional pressure perturbation

P~ pO r o o r o
a(P Ef pa1>cos Y+ B<pd1 + R pdl>cos Y (6.5)
pl max S S
Reses h D
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For convenience of comparison with the aerodynamic charac-
teristics of conical bodies the geometrical parameters of the cir-
cumscribed cone are introduced in formulas (6.2) and (6.3) (see
Fig. 1). :

The method being suggested was used in the calculation for
M} = 4.0. The necessary data on the parameters of the stationary
stream line of the sphere are taken from paper [1]. 1In Figs. 3
and 4 are presented the functions

CmZG= (sza)sﬁ-(cmza)c’ szB=:(szﬁ)s+s(szB)c HHeEE BC = Rs

(B = &L/V)

of the cone half angle 6, and of the center of oscillations

4/L. A positive sign on C,,, corresponds to statistical stabil-
ity, and a positive sign on Cm26 to damped oscillations. The
graph in Fig. 5, where the value of Cyzg x 103 is given, shows
the contribution of the spherical part of the body to the aero-
dynamic moment. This contribution is small for large 6¢, but
rapidly grows with decreased angle of attack, if only the center
of oscillation is not too closely lccated to the center of the
sphere.

§7. Now we will consider the flow over the sphere, per-
forming plane angular oscillations with center 0 (see Fig. 2).
The oscillations about a certain fixed angle-of-attack a®  are
given by the law

% + A
a = a %q

In accord with Part 2 the perturbations caused in the flow
by the angular oscillation of the sphere with center 0 are
equivalent to translation with absolute velocity by the sphere
with center 07. In the case of slow oscillations, if one is
restricted to a linear approximation with respect to frequency,
translations of the body cause the same perturbations in the gas
flow as an imaginary change in both angle-of-attack and velocity
of the undisturbed flow:
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y %
* 1 cos @ %

Aa® = - ———VI———— &, AVch = El sin a & (7.2)

where /7 1is the distance between points 0 and 07, positive
at the rear position of the center of oscillations.

The moment coefficient, relative to the point 0, acting on
the stationary streamline of the sphere under angle-of-attack

O"
is determined by the relation

C
mz

where the radius of
tic dimension, Cy

culating the change
angle-of-attack and

aR

(o, M) =

* et

R: o a*cx(Ml) (7.3)

the sphere is considered as the characteris-
is the drag coefficient of the sphere. Cal-
in moment caused by a fictitious change of
flow velocity (7.2) we obtain

2

S

AC =
\ v
mz L

Cx+sin2 a*<- CX+M1:%><%>

or taking into account (7.3),

Y%
C = - —=— cos o C
mzo R X
s
dRS
(p = v (7.4)

2
Zl\
szB = <E;)

9 aC
c, + sin oc*<- cx+M1§M—’l‘>
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In conclusion we note that the preceding derivatives of the
moment coefficient are associated with the generally used coeffi-

0 (o]
cients of rotational derivatives C a, C B, c ? in the follow-
mz mz mz
ing manner (see [2]):
o
c_=-¢¢ G —cB+cQz B = a®L/V) (7.5)
mzo mz ° mzB  “mz mz :

Submitted 10 Dec. 1960
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